## (Category-IV) <br> COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY THE DEPARTMENT OF MATHEMATICS

## GENERIC ELECTIVES (GE-2(i)): ANALYTIC GEOMETRY

## CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

| Course title \& Code | Credits | Credit distribution of the course |  |  | Eligibility criteria | Pre-requisite of the course |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lecture | Tutorial | Practical/ <br> Practice |  |  |
| Analytic Geometry | 4 | 3 | 1 | 0 | Class XII pass with Mathematic <br> s | NIL |

Learning Objectives: The course aims at:

- Identifying and sketching curves, studying three dimensional objects, their geometric properties and applications.
- Use of vector approach to three-dimensional geometry makes the study simple and elegant.

Learning Outcomes: This course will enable the students to:

- Learn concepts in two-dimensional geometry.
- Identify and sketch conics namely, ellipse, parabola and hyperbola.
- Learn about three-dimensional objects such as straight lines and planes using vectors, spheres, cones and cylinders.


## SYLLABUS OF GE-2(i)

## UNIT - I: Conic Sections

(15 hours)
Techniques for sketching parabola, ellipse and hyperbola; Reflection properties of parabola, ellipse, hyperbola, and their applications to signals; Classification of quadratic equation representing lines, parabola, ellipse and hyperbola; Rotation of axes; Second degree equations.

## UNIT - II: Vectors, Lines and Planes

(18 hours)
Rectangular coordinates in 3-dimensional space, vectors viewed geometrically, vectors in coordinate systems and vectors determined by length and angle; Dot product; Projections; Cross product, scalar triple product, vector triple product and their geometrical properties; Parametric equations of lines, direction cosines and direction ratios of a line, vector and symmetric equations of lines, angle between two lines; Planes in 3-dimensional space, coplanarity of two lines, angle between two planes, distance of a point from a plane, angle between a line and a plane, distance between parallel planes; Shortest distance between two skew lines.

Equation of a sphere, plane section of sphere, tangents and tangent plane to a sphere; Equation of a cone, enveloping cone of a sphere, Reciprocal cones and right circular cone; Equation of a cylinder, enveloping cylinder and right circular cylinder.

## Recommended Readings:

1. Anton, Howard, Bivens, Irl, \& Davis, Stephen (2013). Calculus (10th ed.). John Wiley \& Sons Singapore Pte. Ltd. Indian reprint (2016) by Wiley India Pvt. Ltd. Delhi.
2. Narayan, Shanti \& Mittal, P. K. (2007). Analytical Solid Geometry. S. Chand \& Company Pvt Ltd. India.

## Suggestive Readings:

- Bell, Robert J.T. (1972). An Elementary Treatise on Coordinate Geometry of Three Dimensions. Macmillan \& Co. Ltd. London.
- George B. Thomas, Jr., \& Ross L. Finney (2012). Calculus and Analytic Geometry (9th ed.). Pearson Indian Education Services Pvt Ltd. India.

> GENERIC ELECTIVES (GE-2(ii)): INTRODUCTION TO LINEAR ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

| Course title \& Code | Credits | Credit distribution of the course |  |  | Eligibility criteria | Pre-requisite of the course |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Lecture | Tutorial | Practical/ <br> Practice |  |  |
| Introduction to Linear Algebra | 4 | 3 | 1 | 0 | Class XII pass with Mathematic s | NIL |

Learning Objectives: The objective of the course is:

- To introduce the concept of vectors in $R^{n}$.
- Understand the nature of solution of system of linear equations.
- To view the $m \times n$ matrices as a linear function from $R^{n}$ to $R^{m}$ and vice versa.
- To introduce the concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space $R^{n}$ in terms of vectors and the interrelation of vectors with matrices.
- Understand important uses of eigenvalues and eigenvectors in the diagonalization of matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

UNIT - I: Vectors and Matrices
(18 hours)
Fundamental operations and properties of vectors in $R^{n}$, Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz and triangle inequality, Orthogonal and parallel vectors; Solving system of linear equations using Gaussian elimination, and Gauss-Jordan row reduction, Reduced row echelon form; Equivalent systems, Rank and row space of a matrix; Eigenvalues, eigenvectors and characteristic polynomial of a square matrix; Diagonalization.

## UNIT - II: Vector Spaces

(12 hours)
Definition, examples and some elementary properties of vector spaces; Subspaces, Span, Linear independence and dependence; Basis and dimension of a vector space; Diagonalization and bases.

UNIT - III: Linear Transformations
(15 hours)
Definition, examples and elementary properties of linear transformations; The matrix of a linear transformation; Kernel and range of a linear transformation, The dimension theorem, one-to-one and onto linear transformations.

## Essential Reading

1. Andrilli, S., \& Hecker, D. (2016). Elementary Linear Algebra (5th ed.). Elsevier India.

## Suggestive Reading

- Kolman, Bernard, \& Hill, David R. (2001). Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.

